7th International Workshop on Radiative Properties of Hot Dense Matter, Santa Barbara, California, November 4-8, 1996

Generation and modeling of near-LTE plasmas using ultrashort pulse laser heated tamped, mid-Z targets

Bruce K.F. Young, Brian G. Wilson, Dwight F. Price, and Richard E. Stewart University of California, Lawrence Livermore National Laboratory

We have used high-intensity, high-contrast (≈10⁷), ultrashort laser pulses of intensities up to 3 x 10¹⁹ W·cm⁻² generated at the LLNL 100 fs Ultrashort Pulse Laser (USP) to study near solid density plasmas. In a recent series of experiments, we investigate whether these plasmas approach local thermodynamic equilibrium (LTE) conditions. We measure the L-shell x-ray emission from a 200Å thick Ge target which was tamped by 0-1000Å of CH and heated by a 400 nm, 130 fs laser pulse of intensity between 3 x 10¹⁷ to 3 x 10¹⁹ W·cm⁻². Detailed LASNEX hydrodynamic simulations are similar to those reported by Guethlein, *et al.*[†] We compare the x-ray spectra with various LTE and non-LTE LASNEX simulations using simple atomic (XSN and SCA) models, and using a non-LTE STA package which is similar to the RADIOM NLTE methodology of Busquet[#]. We find very good qualitative agreement with these latter NLTE/STA simulations. We describe these experiments, and discuss improvements for future experiments.

[†]G. Guethlein, M. E. Foord, and D. Price, Phys. Rev. Lett. 77, 1055 (1996).

[#]M. Busquet, Phys. Fluids B, 5, 4191 (1993).

^{*}Work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.